

Nouveaux outils diagnostiques en neurologie

Gaëtan Garraux

MoVeRe www.movere.org

Nouveaux outils diagnostiques

Nouvelles techniques diagnostiques

Ex: UPSIT (hyposmie)

UPSIT: Parkinson vs N

PD: Parkinson's disease; UPSIT: University of Pennsylvania Smell Identification Test.

Ontogénie de l'olfaction

Effets d'événements « aigus »

Mondon et coll

Choix du calcul du score le plus approprié

RESEARCH ARTICLE

Improved diagnosis of Parkinson's disease from a detailed olfactory phenotype

Richard C. Gerkin¹ D, Charles H. Adler², Joseph G. Hentz², Holly A. Shill³, Erika Driver-Dunckley², Shyamal H. Mehta², Marwan N. Sabbagh³, John N. Caviness², Brittany N. Dugger^{4,5}, Geidy Serrano⁴, Christine Belden⁴, Brian H. Smith¹, Lucia Sue⁴, Kathryn J. Davis⁴, Edward Zamrini⁴ & Thomas G. Beach⁴

¹Arizona State University, School of Life Sciences, Tempe, Arizona
²Mayo Clinic College of Medicine, Scottsdale, Arizona
³Barrow Neurological Institute, Phoenix, Arizona
⁴Banner Sun Health Research Institute, Phoenix, Arizona
⁵University of California, San Francisco, California

Quantification de l'hyposmie

Sensibilité ?

-Interview: 1/3 patients hyposmiques en sont anosognosiques (Hawkes et al. 1997)

-Batterie: identification vs seuil de détection, distinction des odeurs, mémoire olfactive? (Potagas 1998)

-Aspects techniques: différences culturelles, vigueur de l'inspiration (Sobel et al. 2001)

Spécificité ?

-Hyposmie démontrée dans Alzheimer, démence à corps de Lewy, atrophie multisystémique, maladie de Huntington, dystonie-parkinsonisme (Hawkes et al. 2003)

-Pathologies ORL (infect. virales, fractures), tabagisme,...

Internet of things (IOT)

Capteurs de mouvements de la marche

HS: Heel-strike TO: Toe-off

Enregistrement ambulatoire de la marche

Enregistrement ambulatoire de la marche

Boutaayamou et al. 2017

Enregistrement ambulatoire de la marche

Ex: variabilité de la durée de la phase d'appui

Boutaayamou et al. 2017

Internet of things (IOT)

IOT → profilage & « Big » data

Nouvelles techniques diagnostiques

Tomographie par émission de positons

TEP FDG: Principe général

Image de la distribution cérébrale du ¹⁸FDG

Image de la distribution cérébrale du ¹⁸FDG

Sujet sain

Démence de type Alzheimer

Démence frontotemporale

Paralysie supranucléaire progressive

Image de la distribution cérébrale du ¹⁸FDG dans la MP

Bakay et al. 2011

Protéinopathies des maladies neurodégénératives

Atteinte étendue des aires associatives dans l'Alzheimer

Normal

Alzheimer disease

2 grands types d'inclusions neuropathologiques de la MA: plaque sénile (amyloïde) et dégénérescence neurofibrillaire (tangle)

Plaques amyloïdes et tangles (protéine tau)

Saint Aubert et al 2017

Les plaques séniles sont riches en protéines amyloïdes Aβ (<APP)

Les lésions de dégénérescence neurofibrillaire riches en protéines Tau anormales

B Alzheimer neuron

Distribution cérébrale des inclusions neuropathologiques dans la MA

Les inclusions apparaissent précocement

Batemen et al. NEJM 2012

Sensibilité des biomarqueurs

Selkoe et al 2017

Visualisation des dépôts amyloïdes (PET scan au ¹⁸F-Flutemetamol)

Cyclotron, ULiège

Plusieurs marqueurs TEP des plaques amyloïdes

Villemagne et al 2017

Traceurs TEP de la protéine Tau

Saint Aubert et al 2017
Image de captation de ¹⁸F-flortaucipir

A Schwartz et al 2017

Etude TEP longitudinale Tau FDG

Chiotis et al. Molecular Psychiatry advance online publication 16 May 2017. doi:10.1038/mp.2017.108

Comparaison de 3 traceurs TEP

Saint Aubert et al Mol Neurodegener. 2017; 12

Définition d'un seuil (cut-off) diagnostique

E Cut-point

— 140

Jack 2017

Seuils FDG (SUVR)

Seuil des traceurs amyloïdes & Tau (SUVR)

Parkinson **→** 2 anomalies cérébrales

Disparition des neurones pigmentés du locus niger
Inclusions de protéines anormales (alpha-synucléine)

Locus niger

Oikawa et al. 2002

TEP (« PET scan ») à la ¹⁸F-DOPA

-Sujet normal

-Patient avec tremblement essentiel,...

¹⁸F-DOPA PET (K_i^{occ}); N=16

G. Garraux (unpublished data)

Validation de la TEP à la ¹⁸F-DOPA

Fluorodopa Uptake Constant vs. Nigral DA Cell Density (Human)

Brooks (2003) Ann N Y Acad Sci. 991:22-35.

TEP (« PET scan ») à la ¹⁸F-DOPA

N, TE, ...

Maladie de Parkinson

TEP à la ¹⁸F-DOPA: parkinson vs. N

Jokinen et al. 2009. J Nucl Med 50:893–899

F (1970) – raideur main gauche à 31 ans

Garraux et al. 2012

F (1970) – raideur main gauche

中の周

Constanting of the second

22

S-CHARTS

1000 B

道部

Trisomie partielle 4q

Duplication hétérozygote d'un segment du chromosome 4 où se situe le locus du gène SNCA (α-synucléine)

Taille de la région dupliquée: 41.2MB (4q21.23 to 4q28.1)

Garraux et al. 2012

volume

PET scan

DAT scan

PD = Parkinson disease; MSA-P = multiple system atrophy-parkinsonian; MSA-C = multiple system atrophy-parkinsonian cerebellar.

Olanow et al. 2009 Neurology 72 (Suppl 4): S1-S136

TEP à la ¹⁸F-DOPA - parkinsonisme

TEP à la ¹⁸F-DOPA - parkinsonisme

CBD MSA PD CBD

TEP au ¹⁸F-tropapride

Imagerie par résonance magnétique (IRM)

Coupes IRM (en pondération T2)

Coupes IRM (en pondération T1)

Coupes IRM (en pondération T1 à haute résolution)

Coupes IRM (en pondération T1 après injection d'un produit de contraste)

Reconstruction IRM 3D des troncs artériels

Perte de neurones pigmentés (locus niger)

IRM conventionnelle MP: normale

IRM anatomique haute résolution

E. Balteau. CRC ULiège, unpublished

IRM "neuromélanine": individu N

Diminished substantia nigra as seen in Parkinson's disease

Garraux et al. CHU Liège, unpublished

IRM "neuromélanine": H (1937) tbt main droite

Substanția nigra

Garraux et al. CHU Liège, unpublished

IRM en pondération de susceptibilité (SWI)

NI Clinical

Locus niger en IRM à 7 Tesla

Images de la perfusion cérébrale au repos par IRMf ASL

G Garraux, CHU Liège, unpublished

DSC global: 50 ml/100g tissu/min

DSC m. grise 80 ml/100g tissu/min

DSC m. blanche 20 ml/100g tissu/min
Exploration de la réserve vasculaire cérébrale (test à l'acétalozamide)

Bokkers R P H et al. Radiology 2010;256:201-208

Mesure de l'activité sensorielle (visuelle) par IRMf BOLD

Eggebrecht Neuroimage. 2012. 16; 61(4): 1120-1128

Etude dynamique des connexions cérébrales

Steve Smith PNAS, 2012

Technologie de pointe (2017) 2 appareils combinés: IRM & PET scan

Images de Siemens

Echograhie transcrânienne

C. Drepper et al. World J of Psychiatry 2017

Echograhie transcrânienne Structures cérébrales profondes

C. Drepper et al. World J of Psychiatry 2017

Elargissement de l'hyperéchogénécité du locus niger dans la maladie de Parkinson

Walter, Journal of Ultrasound in Medicine Volume 32, Issue 10, pages 1837-1843,

Hyperéchogénécité de la substance noire dans la maladie de Parkinson

Sensibilité: 83% Spécificité: 87%

Anomalies comparables chez les porteurs asymptomatiques de mutations LRRK2

Fenêtre osseuse insuffisante chez 4-15% de la population caucasienne

Nouvelles méthodes d'analyse

Nouvelles méthodes d'analyse

Analyse visuelle des images TEP

Sujet sain

Démence de type Alzheimer

Démence frontotemporale

Paralysie supranucléaire progressive

Analyse visuelle des images IRM

Ex: segmentation automatique des images en tissus de représentation de MG, MB et LCR

arrière

Centre de Recherche du Cyclotron, ULg

Segmentation automatique du locus niger

Sans transfert de magnétisation

Avec transfert de magnétisation

Calcul automatique de l'épaisseur du manteau cortical

Seuil d'épaisseur du manteau cortical de la région parahippocampique dans la MA

IRM en pondération de diffusion trajet des fibres de matière blanche

IRM en pondération de diffusion trajet des fibres de matière blanche

IRM en diffusion → reconstruction du trajet des fibres de matière blanche entre les 2 hémisphères cérébraux

Coupe sagittale

Coupe horizontale (axiale)

Visualisation de l'atteinte des fibres nerveuses du locus niger dans la MP

Zieglet et al 2014

PD = Parkinson disease; MSA-P = multiple system atrophy-parkinsonian; MSA-C = multiple system atrophy-parkinsonian cerebellar.

Olanow et al. 2009 Neurology 72 (Suppl 4): S1-S136

TEP au ¹⁸FDG chez un patient atteint de MP

TEP au ¹⁸FDG chez un patient atteint de MSA-P

TEP au ¹⁸FDG chez un patient atteint de MSA-C

TEP au ¹⁸FDG chez un patient atteint de PSP

TEP au ¹⁸FDG chez un patient atteint de SCB

Chevauchement des valeurs individuelles de captation du ¹⁸FDG

Garraux et al. (2000) Mov Disord. 15: 894-904

Classification automatique de PET scans par une méthode d'intelligence artificielle (IA)

But: Tester une méthode d'analyse multivariée de reconnaissance automatique de motifs sur 120 PET scans réalisés en moyenne 3,5 ans après l'apparition des premiers symptômes chez des patients parkinsoniens pour lesquels il existait un doute diagnostique

Classification binaire: maladie de Parkinson (PK) ou syndrome parkinsonien atypique (PK+)

Comparaison avec le diagnostic clinique final ('gold standard') respectivement ~8 et ~2,8 ans après la réalisation du PET scan

120 PET scans (95 Cyclotron ULiège/25 CHU Liège)

		Ν	Genre (F/M)	Age lors du PET scan	Durée de la maladie lors du PET scan	Durée du follow up après PET
PK+	PK	42	17/25	56.9 ± 10.3	3.6 ± 3.1	11.6 ± 5.1
	MSA	31	18/13	66.0 ± 8.8	3.4 ± 2.9	6.4 ± 3.9
	PSP	26	9/17	69.4 ± 7.3	3.1 ± 2.4	5.9 ± 4
	CBS	21	15/6	67.8 ± 7	3.3 ± 2	5.9 ± 2.9
_	All classes	120	59/61	63.9 ± 10.2	3.4 ± 2.7	8.0 ± 5.0

Méthode: reconnaissance de motifs

Méthode: reconnaissance de motifs

Déterminer les motifs discriminants Tester la validité de ces motifs

Résultats: « motifs » discriminants

Résultats: matrice de confusion

Diagnostic du

Diagnostic final

classificateur (IA)

lors du suivi

	РК	PK+
РК	39 (93)	13 (17)
PK+	3 (7)	65 (83)

Comparaison de la méthode d'IA (RVM) avec le diagnostic radiologique

	42 patients PK	78 patients PK+	Total 120
			patients
Correct agreement	26 (62%)	63 (81%)	89 (74%)
Incorrect agreement	2 (5%)	1 (1%)	3 (3%)
Correct RVM,	13 (31%)	2 (3%)	15 (13%)
incorrect radiological			
Correct radiological,	1 (2%)	12 (15%)	13 (11%)
incorrect RVM			

« Profilage » du patient Médecine personnalisée

